Tuple lattice sieving
نویسندگان
چکیده
Lattice sieving is asymptotically the fastest approach for solving the shortest vector problem (SVP) on Euclidean lattices. All known sieving algorithms for solving the SVP require space which (heuristically) grows as 2, where n is the lattice dimension. In high dimensions, the memory requirement becomes a limiting factor for running these algorithms, making them uncompetitive with enumeration algorithms, despite their superior asymptotic time complexity. We generalize sieving algorithms to solve SVP with less memory. We consider reductions of tuples of vectors rather than pairs of vectors as existing sieve algorithms do. For triples, we estimate that the space requirement scales as 2. The naive algorithm for this triple sieve runs in time 2. With appropriate filtering of pairs, we reduce the time complexity to 2 while keeping the same space complexity. We further analyze the effects of using larger tuples for reduction, and conjecture how this provides a continuous trade-off between the memory-intensive sieving and the asymptotically slower enumeration.
منابع مشابه
Faster tuple lattice sieving using spherical locality-sensitive filters
To overcome the large memory requirement of classical lattice sieving algorithms for solving hard lattice problems, Bai–Laarhoven–Stehlé [ANTS 2016] studied tuple lattice sieving, where tuples instead of pairs of lattice vectors are combined to form shorter vectors. Herold–Kirshanova [PKC 2017] recently improved upon their results for arbitrary tuple sizes, for example showing that a triple sie...
متن کاملSpeed-ups and time-memory trade-offs for tuple lattice sieving
In this work we study speed-ups and time–space trade-offs for solving the shortest vector problem (SVP) on Euclidean lattices based on tuple lattice sieving. Our results extend and improve upon previous work of Bai–Laarhoven– Stehlé [ANTS’16] and Herold–Kirshanova [PKC’17], with better complexities for arbitrary tuple sizes and offering tunable time–memory tradeoffs. The trade-offs we obtain st...
متن کاملShortest Vector from Lattice Sieving: a Few Dimensions for Free
Asymptotically, the best known algorithms for solving the Shortest Vector Problem (SVP) in a lattice of dimension n are sieve algorithms, which have heuristic complexity estimates ranging from (4/3) down to (3/2) when Locality Sensitive Hashing techniques are used. Sieve algorithms are however outperformed by pruned enumeration algorithms in practice by several orders of magnitude, despite the ...
متن کاملCAIRN 3: An FPGA Implementation of the Sieving Step with the Lattice Sieving
The hardness of the integer factorization problem assures the security of some public-key cryptosystems including RSA, and the number field sieve method (NFS), the most efficient algorithm for factoring large integers currently, is a threat for such cryptosystems. Recently, Izu et al. developed a dedicated sieving device “CAIRN 2” with Xilinx’s FPGA which is designed to handle up to 768-bit int...
متن کاملTuning GaussSieve for Speed
The area of lattice-based cryptography is growing ever-more prominent as a paradigm for quantum-resistant cryptography. One of the most important hard problem underpinning the security of latticebased cryptosystems is the shortest vector problem (SVP). At present, two approaches dominate methods for solving instances of this problem in practice: enumeration and sieving. In 2010, Micciancio and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016